

MIE 315 Final Presentation

Why Solar is Better

Solar Thermal Water Heating vs Natural Gas Water Heating

Introduction and Background

Who is the Client?

- **Uoft Cooperative Residences**
- Owns 24 homes in Downtown Toronto

Introduction and Background

Who is the Client?

- **Uoft Cooperative Residences**
- Owns 24 homes in Downtown Toronto

What happened to them?

Received grant to upgrade their water heating systems

Introduction and Background

Who is the Client?

- Uoft Cooperative Residences
- Owns 24 homes in Downtown Toronto

What happened to them?

 Received grant to upgrade their water heating systems

Why is this important?

- Water heating is essential in freezing climates
- Vital in ensuring health and safety of residents

Motivation for this Report

The Motivation

- Client is considering two systems
 - Natural Gas Water Heating (NG)
 - Solar Thermal Water Heating (ST)

The Goal

Increase Sustainability of Residences and Maximize grant through analysis of NG and ST systems

Motivation for this Report

The Motivation

- Client is considering two systems
 - Natural Gas Water Heating (NG)
 - Solar Thermal Water Heating (ST)
- Team is to determine which system is:
 - More sustainable
 - Maximizes the benefits of the grant
- Team will conduct various analyses that compare environmental impacts, costs, and overall function of systems

The Goal

Increase Sustainability of Residences and Maximize grant through analysis of NG and ST systems

Scope and System Boundary

The Scope

- Focus placed on five life cycle stages
 - Premanufacturing
 - Manufacturing
 - Distribution
 - Use
 - Disposal (In Certain Analyses)
- Focus only on impacts due to inputs, outputs and direct energy consumption of these life stages

Scope and System Boundary

The Scope

- Focus placed on five life cycle stages
 - Premanufacturing
 - Manufacturing
 - Distribution
 - Use
 - Disposal (In Certain Analyses)
- Focus only on impacts due to inputs, outputs and direct energy consumption of these life stages

The System Boundary

- Common external features are excluded
- Processes related to by-products are excluded
- All emissions are included

FOC's - Functions, Objectives, & Constraints

SLCA - Streamlined Life Cycle Assessment

FOC's - Functions, Objectives, & Constraints

SLCA - Streamlined Life Cycle Assessment

FOC's - Functions, Objectives, & Constraints

SLCA - Streamlined Life Cycle Assessment

Functional Unit: The amount of energy input required over 20 years to heat 160 gallons of water per day to 60 °C

Functions

Convert cold water into hot water for the consumer

Transform input energy to heat energy

Functions

Convert cold water into hot water for the consumer

Transform input energy to heat energy

Objectives

More Efficient

More Environmentally Friendly

More Economically Viable

Functions <

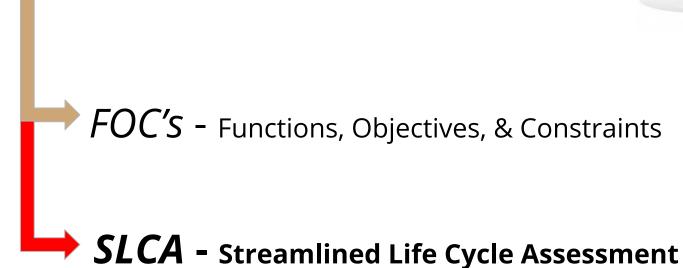
Convert cold water into hot water for the consumer

Transform input energy to heat energy

Objectives

More Efficient

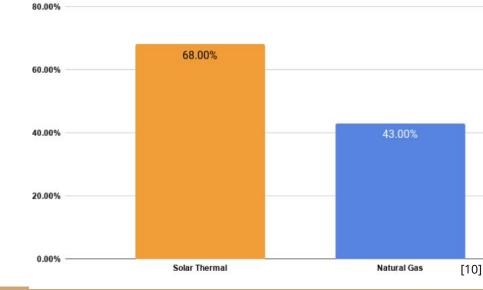
More Environmentally Friendly


More Economically Viable

Safety Requirements

Maximum CO₂ Emissions

Streamlined LCA


SLCA matrix Table according to certain life stages and environmental stressors

Solar Thermal Water Heating is preferred

. The SLCA matrix table to be filled in

SLCA Matrix	Material	Energ	y Use	Solid		Liqui	d	Gaseou	us
	Choice			Resid	ue	Resid	ue	Residu	e
Pre-	(1,1)	(1,2)		(1,3)		(1,4)		(1,5)	
Manufacturing	Score:		Score:		Score:		Score:		Score:
Manufacturing	(2,1)	(2,2)		(2,3)		(2,4)		(2,5)	
	Score:		Score:		Score:		Score:		Score:
Packaging and	(3,1)	(3,2)		(3,3)		(3,4)	•	(3,5)	
Transport	Score:		Score:		Score:		Score:		Score:
Use	(4,1)	(4,2)		(4,3)		(4,4)		(4,5)	
	Score:		Score:		Score:		Score:		Score:
Disposal	(5,1)	(5,2)		(5,3)		(5,4)	•	(5,5)	
	Score:		Score:		Score:		Score:		Score:
Total Score									

SLCA Matrix Scores

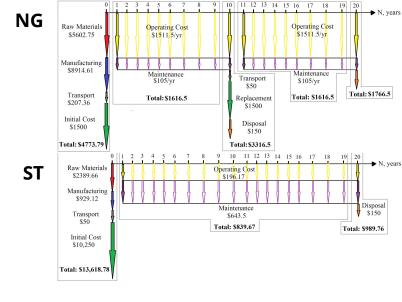
Final Consultant's Report

→ Economic Analysis

Hybrid LCA & Impact Assessment

Societal Analysis

Final Consultant's Report



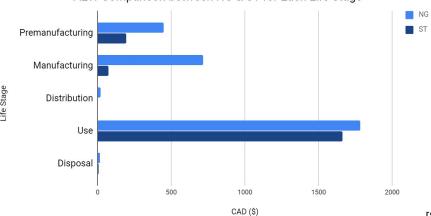
Hybrid LCA & Impact Assessment

Societal Analysis

Economic Analysis

The cash flows relevant to each life stage was found for both alternative systems

Economic Analysis


The cash flows relevant to each life stage was found for both alternative systems

NG has an annual equivalent cost of \$2982.7 ST \$1937.01

10 11 12 13 14 15 16 17 18 19 20

[8]

Final Consultant's Report

→ Economic Analysis

→ Hybrid LCA & Impact Assessment

Societal Analysis

Economic Input-Output LCA

Pre-manufacturing

Manufacturing

Distribution

Use (Maintenance)

Process-based LCA

Use (Performance)

Impact Assessment

Selection Classification Characterization Valuation

Global Warming Human Health Factor

Acidification Biodiversity

Photochemical Smog Resource Consumption

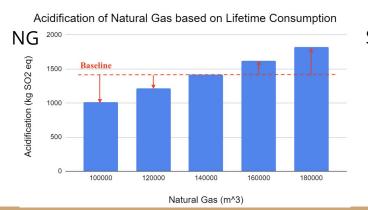
Eutrophication

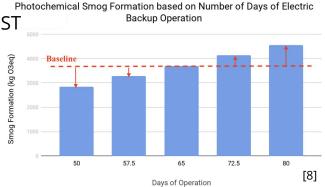
Ozone Depletion

Economic Input-Output LCA

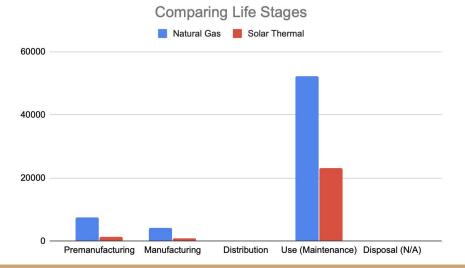
Pre-manufacturing

Manufacturing

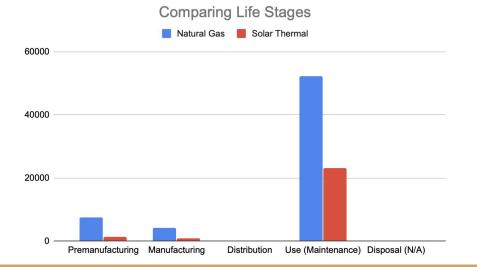

Distribution

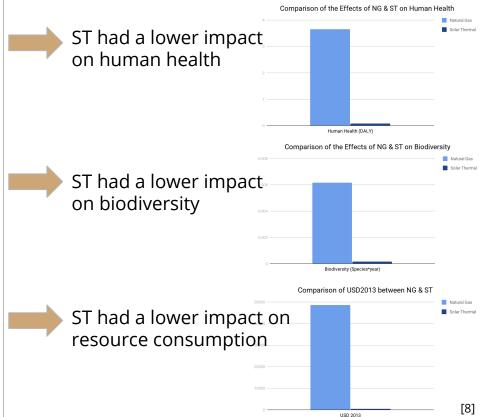

Use (Maintenance)

Process-based LCA Use (Performance) Uncertainty resulting in Sensitivity


Greatest variance from the baseline was 29% for NG compared to 23% for ST

Total dollars per heating system for NG is \$64,090.35 and for ST is \$25,092.92

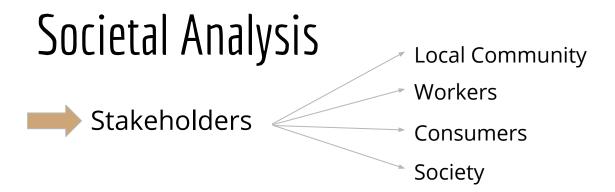

ST cost more than NG across all life stages

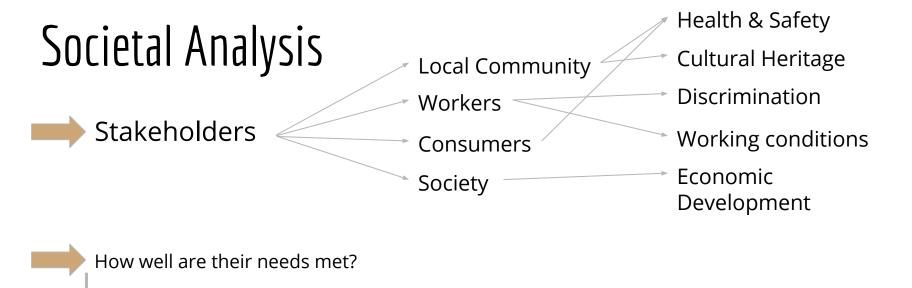

Impact Assessment

Total dollars per heating system for NG is \$64,090.35 and for ST is \$25,092.92

ST cost more than NG across all life stages

Impact Assessment


Final Consultant's Report



→ Economic Analysis

Hybrid LCA & Impact Assessment

→ Societal Analysis

A score is given accordingly

Societal Analysis

Stakeholders

Local Community

Workers

Consumers

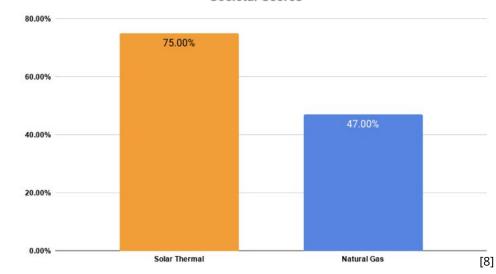
Society

Health & Safety

Cultural Heritage

Discrimination

Working conditions


Economic Development

Societal Scores

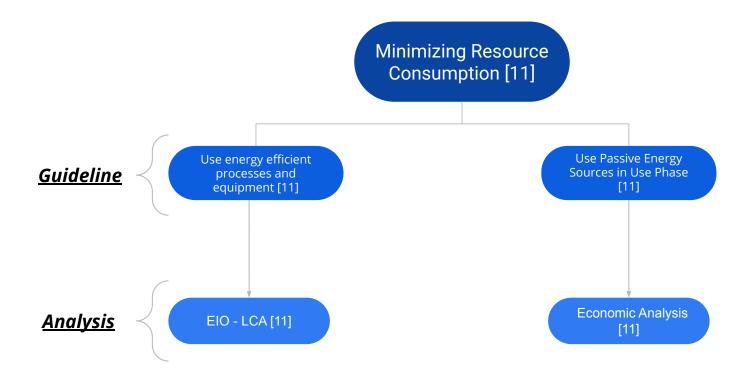
How well are their needs met?

A score is given accordingly

ST had a final score of 75% which was higher than NG score, 47%.

Design for Environment Strategies

- → Minimizing Resource Consumption
- → Use Low Impact Resources
- → Optimize Product Lifetime
- Extend Material Lifetime & Design for Disassembly


Design for Environment Strategies

- → Use Low Impact Resources
- → Optimize Product Lifetime
 - Extend Material Lifetime & Design for Disassembly

1st DfE Strategy: Minimizing Resource Consumption

Guideline #1: Use energy efficient processes and equipment

<u>Pre - Manufacturing Stage: Raw</u> <u>Materials Used</u>

Natural Gas:

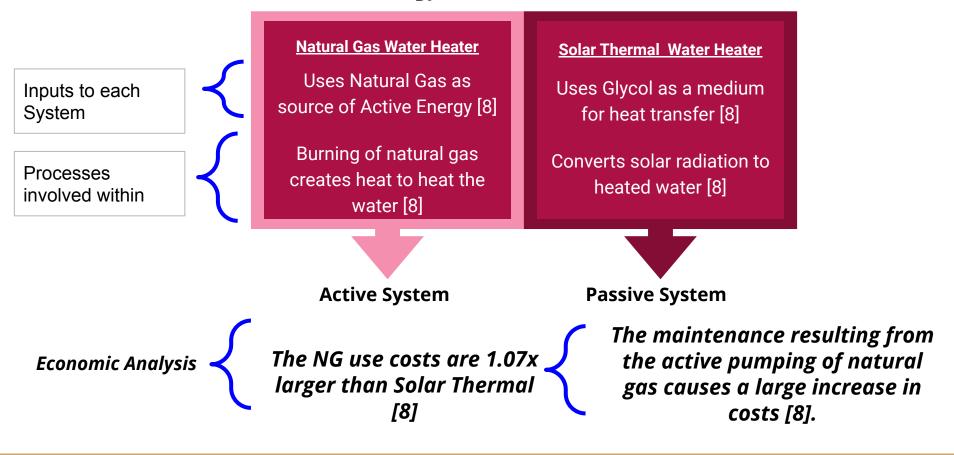
- 1) Energy into compressor at Wellhead [8]
- 2) Fuel Gas used in the Oil Rigs
 [8]

Solar Thermal:

 Glass, Aluminum, and Copper found in the framework of the collector and the tank [8]

EIO - LCA

Natural Gas Solar Thermal Inlet Gas Collector and Compression and Oil Rigs **Tank** Power Needed 29479 Kwh [8] Virgin Materials [8] 13.59 x 10⁶ m3 of Fuel Gas [8] \$7571 \$1176 [8] [8]

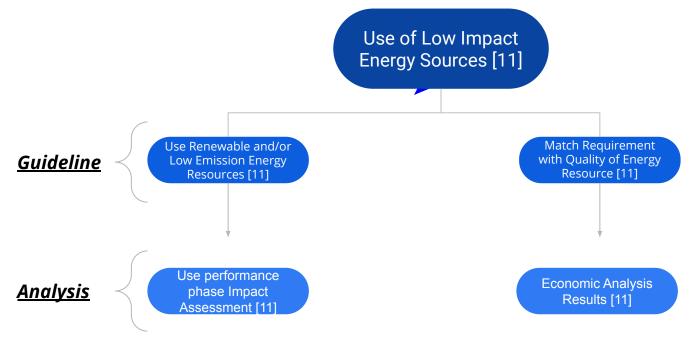

Pre-Manufacturing Monetary Value

Solar Thermal < Natural Gas

Natural Gas is a more Energy Intensive Process

Guideline #2: Use Passive Energy Sources in Use Phase

Design for Environment Strategies


→ Minimizing Resource Consumption

Use Low Impact Resources

Optimize Product Lifetime

Extend Material Lifetime & Design for Disassembly

2st DfE Strategy: Use Low Impact Resources

Guideline #1: Use of Renewable and/or Low Emission Energy

Resources

Inputs to each System

Emissions

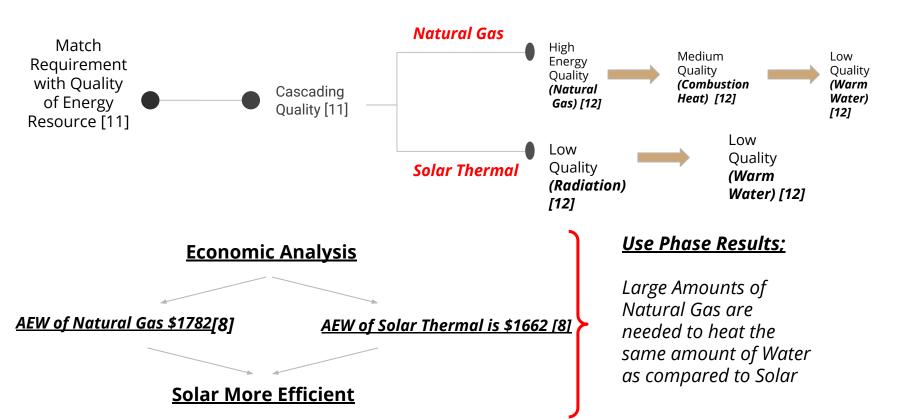
Natural Gas Water Heater

Uses non-renewable fossil fuels [8].

Harmful Emissions
Produced, and Natural
Gas is harmful itself [8]

Solar Thermal Water Heater

Uses Solar Radiation as it main form of energy input [8]


No harmful emissions produced in use phase [8]

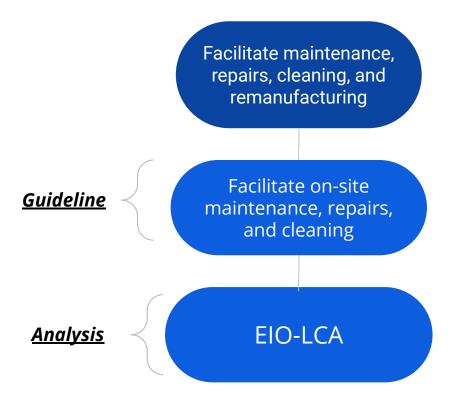
Impact Assessment

The Midpoint to Endpoint
Recipe Category Results for
NG range from 70 - 3000 x
larger than ST [8].

Large environmental impacts from NG due to it releasing harmful emissions [8].

Guideline #2: Match Requirement with Quality of Energy Resource

Design for Environment Strategies


→ Minimizing Resource Consumption

→ Use Low Impact Resources

Optimize Product Lifetime

Extend Material Lifetime & Design for Disassembly

3rd DfE Strategy: Optimize Product Lifetime

3st DfE Strategy: Optimize Product Lifetime

Note:

Both systems use same tank

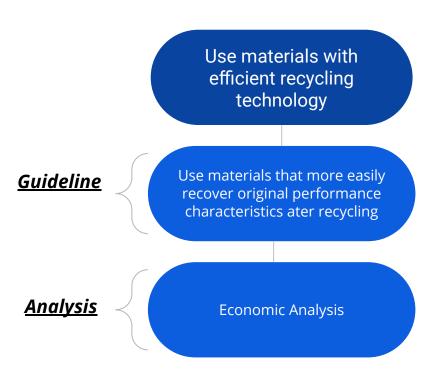
Natural Gas Water Heater

Maintenance of gas components required

Solar Thermal Water Heater

- Dust and vegetation removal
- Crack repair

EIO-LCA Analysis


The Use Maintenance Phase of EIO-LCA shows that NG costs 2.4x more than ST [8]

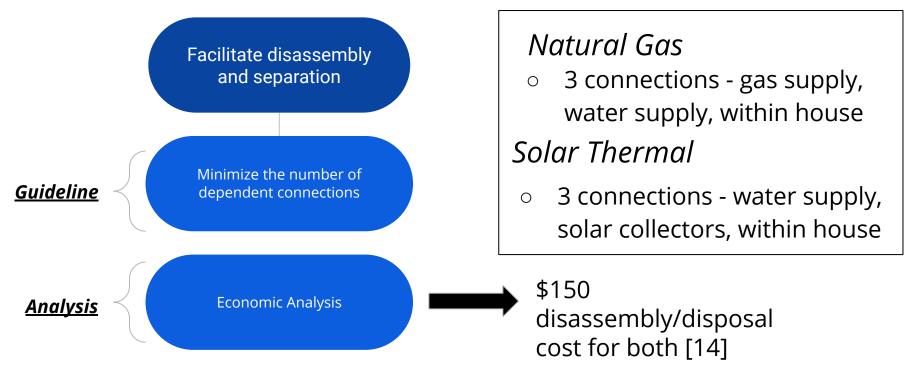
Design for Environment Strategies

- → Minimizing Resource Consumption
- → Use Low Impact Resources
- Optimize Product Lifetime
 - Extend Material Lifetime & Design for Disassembly

4th DfE Strategy: Extend Material Lifetime

Natural Gas

 Combustion → reduce recycling ability & lifetime

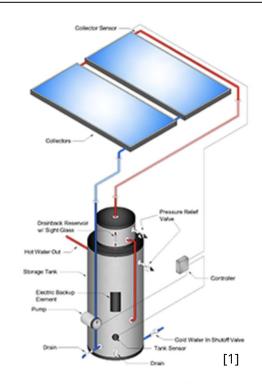

Solar Thermal

 Heat exchanger → components unaffected [13]

Over a 20 year lifetime, the replacement cost for natural gas is...

\$1500 [8]

5th DfE Strategy: Design for Disassembly


Final Recommendation

Recommendations for ST (Dfe Strategies)

- Minimize Energy Consumption: Use more recycled materials to achieve 90-95% energy savings [8]
- Improve Passive system: Increase fluid thermal properties in order to increase efficiency
- Extend Lifetime & Facilitate Maintenance:
 Automated Cleaning & Tankless Alternative to
 Lower Maintenance Cost

Optimal Design:

Solar Thermal water heating

Thank you!

Design for the Environment

References

- [1]"Water Heating Systems | Solar Water Heating System | Solar Water Heaters", *Aetsolar.com*, 2020. [Online]. Available: http://www.aetsolar.com/water-heating-systems.php. [Accessed: 07- Apr- 2020]
- [2]"How Is a Tank Type Gas Water Heater Designed?", *The Spruce*, 2020. [Online]. Available: https://www.thespruce.com/anatomy-of-a-gas-water-heater-1824894. [Accessed: 07- Apr- 2020]
- [3]"Campus Co-op | Co-operative Housing Federation of Toronto", *Co-ophousingtoronto.coop*, 2020. [Online]. Available: https://co-ophousingtoronto.coop/campus-co-op/. [Accessed: 07- Apr- 2020]
- [4]"Toronto ranked one of the world's top winter getaways by Oprah! | YC Real Estate Team Integrity. Honesty. Hard Work. Relationship Foremost.", *Ycteam.ca*, 2020. [Online]. Available: https://ycteam.ca/toronto-ranked-one-of-the-worlds-top-winter-getaways-by-oprah/. [Accessed: 07- Apr- 2020]
- [5]"Stock photography Goal Target Corporation Clip art Target PNG png download 2615*2755 Free Transparent Stock Photography png Download. Clip Art Library", Clipart-library.com, 2020. [Online]. Available: http://clipart-library.com/clip-art/goals-clipart-transparent-12.htm. [Accessed: 07- Apr- 2020]
- [6]"Guarding Your Boundaries: When Adult Children and Parents Live Together Parenting Expert, Susan Newman Ph.D.", *Parenting Expert, Susan Newman Ph.D.*, 2020. [Online]. Available: https://www.susannewmanphd.com/blog/2010/05/19/guarding-your-boundaries-when-adult-children-and-parents-live/. [Accessed: 07- Apr- 2020]
- [7]"Construction Cone Clip Art at Clker.com vector clip art online, royalty free & public domain", *Clker.com*, 2020. [Online]. Available: http://www.clker.com/clipart-construction-cone.html. [Accessed: 07- Apr- 2020]
- [8]M. Khoshaba, Y. Elgharib, K. Guirgus and K. Maarouf, "Final Consultants Report: Natural Gas vs Solar Water Heating", 2020
- [9]S. Osborne, "A Deeper Look at SiriusXM's Average Revenue," *SiriusBuzz*, 13-Aug-2012. [Online]. Available: http://siriusbuzz.com/a-deeper-look-at-siriusxms-average-revenue.php. [Accessed: 07-Apr-2020].
- [10]M. Khoshaba, Y. Elgharib, K. Guirgus and K. Maarouf, "Preliminary Consultants Report: Natural Gas vs Solar Water Heating", 2020.
- [11] C. Vezzoli, Design for environmental sustainability.
- [12] Professor Kazemi, Lecture 8 Part 3: Low Impact Energy Sources
- [13] "How Do Solar Hot Water Heating Systems Work?," Evergreen Energy, 21-Nov-2019. [Online]. Available: https://www.evergreenenergy.co.uk/solar-thermal-panels/how-does-solar-water-heating-work/. [Accessed: 07-Apr-2020].
- [14] "Pricing2 JUST JUNK®", JUST JUNK® , 2020. [Online]. Available: https://justjunk.com/book2?section=pricing. [Accessed: 16-Mar- 2020